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Abstract

A search for pair production of third-generation scalar leptoquarks and supersym-
metric top quark partners, top squarks, in final states involving tau leptons and bot-
tom quarks is presented. The search uses events from a data sample of proton-proton
collisions corresponding to an integrated luminosity of 19.7 fb−1, collected with the
CMS detector at the LHC with

√
s = 8 TeV. The number of observed events is found

to be in agreement with the expected standard model background. Third-generation
scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level,
assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a
bottom quark. In addition, this mass limit applies directly to top squarks decaying
via an R-parity violating coupling λ′333. The search also considers a similar signature
from top squarks undergoing a chargino-mediated decay involving the R-parity vio-
lating coupling λ′3jk. Each top squark decays to a tau lepton, a bottom quark, and two
light quarks. Top squarks in this model with masses below 580 GeV are excluded at
95% confidence level. The constraint on the leptoquark mass is the most stringent to
date, and this is the first search for top squarks decaying via λ′3jk.
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1 Introduction
Many extensions of the standard model (SM) predict new scalar or vector bosons, called lep-
toquarks (LQ), which carry non-zero lepton and baryon numbers, as well as color and frac-
tional electric charge. Examples of such SM extensions include SU(5) grand unification [1],
Pati–Salam SU(4) [2], composite models [3], superstrings [4], and technicolor models [5]. Lep-
toquarks decay to a quark and a lepton with a branching fraction that is model-dependent.
Experimental limits on flavor-changing neutral currents and other rare processes suggest that
searches should focus on leptoquarks that couple to quarks and leptons within the same SM
generation, for leptoquark masses accessible to current colliders [3, 6].

The dominant pair production mechanisms for leptoquarks at the CERN LHC would be gluon-
gluon fusion and quark-antiquark annihilation via quantum chromodynamic (QCD) couplings.
The cross sections for these processes depend only on the leptoquark mass and spin. In this
Letter, a search with the CMS detector for third-generation scalar leptoquarks, each decaying
to a tau lepton and a bottom quark, is presented.

Similar signatures arising from supersymmetric models are also covered by this search. Super-
symmetry (SUSY) [7, 8] is an attractive extension of the SM because it can resolve the hierarchy
problem without unnatural fine-tuning, if the masses of the supersymmetric partner of the top
quark (top squark) and the supersymmetric partners of the Higgs boson (higgsinos) are not too
large [9, 10]. In many natural SUSY models the top squark and the higgsinos are substantially
lighter than the other scalar SUSY particles. This light top squark scenario can be realized in
both R-parity conserving (RPC) and R-parity violating (RPV) SUSY models, where R-parity is
a new quantum number [11] that distinguishes SM and SUSY particles. In the context of an
RPC decay of the top squark, the presence of an undetected particle (the lightest SUSY particle)
is expected to generate a signature with large missing transverse momentum. If R-parity is
violated, however, SUSY particles can decay into final states containing only SM particles. The
RPV terms in the superpotential are:

W 3 1
2

λijkLiLjEc
k + λ′ijkLiQjDc

k +
1
2

λ′′ijkUc
i Dc

j Dc
k + µiLi Hu (1)

where W is the superpotential; L is the lepton doublet superfield; E is the lepton singlet super-
field; Q is the quark doublet superfield; U and D are the quark singlet superfields; Hu is the
Higgs doublet superfield that couples to up-type quarks; λ, λ′, and λ′′ are coupling constants;
and i, j, and k are generation indices.

At the LHC, top squarks (̃t) would be directly pair-produced via strong interactions. In this
search, two different decay channels of directly produced top squarks are considered. Both
scenarios relate to simplified models in which all of the other SUSY particles have masses too
large to participate in the interactions. In the first case we study the two-body lepton number
violating decay t̃ → τb [11] with a coupling constant λ′333 allowed by the trilinear RPV op-
erators. The final-state signature and kinematic distributions of such a signal are identical to
those from the pair production of third-generation scalar leptoquarks. When the masses of the
supersymmetric partners of the gluon and quarks, excluding the top squark, are large, the top
squark pair production cross section is the same as that of the third generation LQ. Thus, the
results of the leptoquark search can be directly interpreted in the context of RPV top squarks.

In some natural SUSY models [12], if the higgsinos (χ̃0, χ̃±) are lighter than the top squark,
or if the RPV couplings that allow direct decays to SM particles are sufficiently small, the top
squark decay may preferentially proceed via superpartners. In the second part of the search
we focus on a scenario in which the dominant RPC decay of the top squark is t̃ → χ̃±b, and
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therefore we choose the mass splitting between the top squark and the chargino (χ̃±) to be
100 GeV. The chargino is assumed to be a pure higgsino and we consider the case when χ̃± →
ν̃τ± → qqτ±. The decay of the sneutrino occurs according to an RPV operator with a coupling
constant λ′3jk, where the cases j, k = 1, 2 are considered. Such signal models can only be probed
by searches that do not require large missing transverse momentum, as the other decay of the
chargino, χ̃± → ντ̃, does not contribute to scenarios involving the λ′3jk coupling because of
chiral suppression. From such a signal process, we expect events with two tau leptons, two jets
originating from hadronization of the bottom quarks, and at least four additional jets.

In this Letter, the search for scalar leptoquarks and top squarks decaying through the coupling
λ′333 is referred to as the leptoquark search. The search for the chargino-mediated decay of top
squarks involving the λ′3jk coupling is referred to as the top squark search. The data sample
used in this search has been recorded with the CMS detector in proton-proton collisions at a
center-of-mass energy of 8 TeV and corresponds to an integrated luminosity of 19.7 fb−1. One
of the tau leptons in the final state is required to decay leptonically: τ → `ν̄`ντ, where ` can
be either an electron or a muon, denoted as a light lepton. The other tau lepton is required
to decay to hadrons (τh): τ → hadrons + ντ. These decays result in two possible final states
labeled below as eτh and µτh, or collectively `τh when the lepton flavor is unimportant. The
leptoquark search is performed in a mass range from 200 to 1000 GeV using a sample of events
containing one light lepton, a hadronically decaying tau lepton, and at least two jets, with at
least one of the jets identified as originating from bottom quark hadronization (b-tagged). The
top squark search is performed in a mass range from 200 to 800 GeV using a sample of events
containing one light lepton, a hadronically decaying tau lepton, and at least five jets, with at
least one of the jets b-tagged.

No evidence for third-generation leptoquarks or top squarks decaying to tau leptons and bot-
tom quarks has been found in previous searches [13, 14]. The most stringent lower limit to
date on the mass of a scalar third generation leptoquark decaying to a tau lepton and a bottom
quark with a 100% branching fraction is about 530 GeV from both the CMS and ATLAS exper-
iments. This Letter also presents the first search for the chargino-mediated decay of the top
squark through the RPV coupling λ′3jk.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal di-
ameter, providing a field of 3.8 T. Within the field volume are several subdetectors. A silicon
pixel and strip tracker allows the reconstruction of the trajectories of charged particles within
the pseudorapidity range |η| < 2.5. The calorimetry system consists of a lead tungstate crystal
electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter, and mea-
sures particle energy depositions for |η| < 3. The CMS detector also has extensive forward
calorimetry (2.8 < |η| < 5.2). Muons are measured in gas-ionization detectors embedded in
the steel flux-return yoke of the magnet. Collision events are selected using a two-tiered trigger
system [15]. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [16].

3 Object and event selection
Candidate LQ or top squark events were collected using a set of triggers requiring the presence
of either an electron or a muon with transverse momentum (pT) above a threshold of 27 or
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24 GeV, respectively.

Both electrons and muons are required to be reconstructed within the range |η| < 2.1 and to
have pT > 30 GeV. Electrons, reconstructed using information from the ECAL and the tracker,
are required to have an electromagnetic shower shape consistent with that of an electron, and
an energy deposition in ECAL that is compatible with the track reconstructed in the tracker.
Muons are required to be reconstructed by both the tracker and the muon spectrometer. A
particle-flow (PF) technique [17–19] is used for the reconstruction of hadronically decaying tau
lepton candidates. In the PF approach, information from all subdetectors is combined to recon-
struct and identify all final-state particles produced in the collision. The particles are classified
as either charged hadrons, neutral hadrons, electrons, muons, or photons. These particles are
used with the “hadron plus strips” algorithm [20] to identify τh objects. Hadronically decaying
tau leptons with one or three charged pions and up to two neutral pions are reconstructed.
The reconstructed τh is required to have visible pT > 50 GeV and |η| < 2.3. Electrons, muons,
and tau leptons are required to be isolated from other reconstructed particles. The identified
electron (muon) and τh are required to originate from the same vertex and be separated by
∆R =

√
(∆η)2 + (∆φ)2 > 0.5. The light lepton and the τh are also required to have opposite

electric charge. Events are vetoed if another light lepton is found, passing the kinematic, iden-
tification, and isolation criteria described above, that has an opposite electric charge from the
selected light lepton.

Jets are reconstructed using the anti-kT algorithm [21, 22] with a size parameter 0.5 using par-
ticle candidates reconstructed with the PF technique. Jet energies are corrected by subtracting
the average contribution from particles coming from other proton-proton collisions in the same
beam crossing (pileup) and by applying a jet energy calibration, determined empirically [23].
Jets are required to be within |η| < 2.4, have pT > 30 GeV, and be separated from both the
light lepton and the τh by ∆R > 0.5. Jets are b-tagged using the combined secondary vertex
algorithm [24]. In the leptoquark search, the b-tagged jet with the highest pT is selected, and
then the remaining jet with the highest pT is selected whether or not it is b-tagged. In the top
squark search, the b-tagged jet with the highest pT is selected, and then the remaining four jets
with the highest pT are selected whether or not they are b-tagged.

To discriminate between signal and background in the leptoquark search, the mass of the τh and
a jet, denoted M(τh, jet), is required to be greater than 250 GeV. There are two possible pairings
of the τh with the two required jets. The pairing is chosen to minimize the difference between
the mass of the τh and one jet and the mass of the light lepton and another jet. According to a
simulation, the correct pairing is selected in approximately 70% of events.

The ST distribution after the final selection is used to extract the limits on both the leptoquark
and top squark signal scenarios, where ST is defined as the scalar sum of the pT of the light
lepton, the τh, and the two jets (five jets) for the leptoquark search (top squark search).

4 Background and signal models
Several SM processes can mimic the final-state signatures expected from leptoquark or top
squark pair production and decay. For this analysis, the backgrounds are divided into three
groups, which are denoted as tt irreducible, major reducible, and other. The tt irreducible back-
ground comes from the pair production of top quarks (tt) when both the light lepton and τh are
genuine, each produced from the decay of a W boson. In this case, the light lepton can originate
either directly from the W boson decay or from a decay chain W → τντ → `ν`ντντ. The major
reducible background consists of events in which a quark or gluon jet is misidentified as a τh.
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The processes contributing to the major reducible background are associated production of a W
or Z boson with jets, and tt. Additionally, a small contribution from the QCD multijet process is
included, in which both the light lepton and the τh are misidentified jets. The third group, other
backgrounds, consists of processes that make small contributions and may contain either gen-
uine or misidentified tau leptons. This includes the diboson and single-top-quark processes,
the tt and Z+jets processes when a light lepton is misidentified as a τh, and the Z+jets process
when the Z boson decays to a pair of tau leptons. The other backgrounds are estimated from
the simulation described below, while the tt irreducible and major reducible backgrounds are
estimated using observed data.

The PYTHIA v6.4.24 generator [25] is used to model the signal and diboson processes. The lep-
toquark signal samples are generated with masses ranging from 200 to 1000 GeV, and the top
squark signal samples are generated with masses ranging from 200 to 800 GeV and the sneu-
trino mass set to 2000 GeV. The MADGRAPH v5.1.3.30 generator [26] is used to model the tt,
W+jets, and Z+jets processes. The single top-quark production is modeled with the POWHEG

1.0 r138 [27–29] generator. Both the MADGRAPH and POWHEG generators are interfaced with
PYTHIA for hadronization and showering. The TAUOLA program [30] is used for tau lepton de-
cays in the leptoquark, tt, W+jets, Z+jets, diboson, and single top-quark samples. Each sample
is passed through a full simulation of the CMS detector based on GEANT4 [31] and the com-
plete set of reconstruction algorithms is used to analyze collision data. Cross sections for the
leptoquark signal and diboson processes are calculated to next-to-leading order (NLO) [32, 33].
The cross sections for the top squark signal are calculated at NLO in the strong coupling con-
stant, including the resummation of soft gluon emission at next-to-leading-logarithmic accu-
racy (NLO+NLL) [34–38]. The next-to-next-to-leading-order or approximate next-to-next-to-
leading-order [39, 40] cross sections are used for the rest of the background processes.

The efficiencies of the trigger and final selection criteria for signal processes are estimated from
the simulation. The efficiencies for leptons and b jets are calculated from data and used where
necessary to correct the event selection efficiency estimations from the simulation.

The tt irreducible background is estimated from an eµ sample that is 87% pure in tt events ac-
cording to the simulation. This sample comprises events with one electron and one muon that
satisfy the remaining final selection criteria, except that a τh is not required. The potential signal
contamination of this sample has been found to be negligible for any signal mass hypothesis.
The final yield of the eµ sample is scaled by the relative difference in the selection efficiencies
between the `τh and eµ samples. The selection efficiencies are measured in the simulation and
are corrected to match those from collision data. The estimation of the final yield based on the
observed data agrees with both the direct prediction from the simulation and the yield obtained
after applying the same method to the Monte Carlo (MC) samples. The ST distribution for the
tt irreducible background is obtained from a simulated tt sample that consists exclusively of
fully leptonic decays of top quarks.

The major reducible background from tt, W+jets, and Z+jets events in which a jet is misiden-
tified as a hadronically decaying tau lepton is estimated from observed data. The probability
of misidentification is measured using events recorded with a Z boson produced in association
with jets and decaying to a pair of muons (Z → µµ). The invariant mass of the muon pair
is required to be greater than 50 GeV and events are required to contain at least one jet that is
incorrectly identified as a τh and may or may not pass the isolation requirement. The misiden-
tification probability f (pT(τ)) is calculated as the fraction of these τh candidates that pass the
isolation requirement and depends on the pT of the candidates. The background yield is esti-
mated from a sample of events satisfying the final selection criteria, except that all τh candidates
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in the events must fail the isolation requirement. Equation (2) relates the yield of these “anti-
isolated” events to the yield of events passing the final selection, using the misidentification
probability:

NmisID τ =
(anti-iso)

∑
events

1−∏τ

[
1− f

(
pT(τ)

)]
∏τ

[
1− f

(
pT(τ)

)] . (2)

The estimation of the final yield based on the observed data agrees with both the direct predic-
tion from the simulation and the estimation performed using the same approach on simulated
samples. The ST distribution for the major reducible background is obtained using simulated
samples for the W+jets and Z+jets processes and the tt process with exclusively semi-leptonic
decays.

The QCD multijet process contributes only in the eτh channel in the leptoquark search and
corresponds to 16% of the reducible background. The contribution from multijet events is esti-
mated from a sample of observed events satisfying the final selection criteria for the eτh channel
except that the electron and τh must have the same electric charge. The QCD component is in-
cluded in the distribution of the rest of the major reducible background, described above.

5 Systematic uncertainties
There are a number of systematic uncertainties associated with both the background estimation
and the signal efficiency. The uncertainty in the total integrated luminosity is 2.6% [41]. The
uncertainty in the trigger and lepton efficiencies is 2%, while the uncertainty assigned to the
τh identification efficiency is 6%. The uncertainties in the b-tagging efficiency and mistagging
probability depend on the η and pT of the jet and are on average 4% and 10%, respectively [42].

Systematic uncertainties, totaling 19–22% depending on the channel and the search, are as-
signed to the normalization of the tt irreducible background based on statistical uncertainty in
the control samples and the propagation of the uncertainties in the acceptances and efficiencies.
Systematic uncertainties in the major reducible background are driven by statistical uncertainty
in the measured misidentification probability and variation in the misidentification probability
based on the event topology. These uncertainties amount to 16–24%, depending on the channel
and the search.

Because of the limited number of events in the simulation, uncertainties in the small back-
grounds range between 20–50%. Uncertainty due to the effect of pileup modeling in the MC is
estimated to be 3%. A 4% uncertainty, due to modeling of initial- and final-state radiation in the
simulation, is assigned to the signal acceptance. A 7–32% uncertainty from knowledge of par-
ton density functions and a 14–80% uncertainty from QCD renormalization and factorization
scales are assigned to the theoretical signal cross-section. Finally, jet energy scale uncertain-
ties (2–4% depending on η and pT) and energy resolution uncertainties (5–10% depending on
η), as well as energy scale (3%) and resolution (10%) uncertainties for τh, affect both the ST
distributions and the expected yields from the signal and background processes.

6 Results
The numbers of observed events and expected signal and background events after the final se-
lection for the leptoquark and top squark searches are listed in Tables 1 and 2, respectively. The
ST distributions of the selected events from the observed data and from the background predic-
tions, combining eτh and µτh channels, are shown in Fig. 1 for the leptoquark search and Fig.
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2 for the top squark search. The distribution from the 500 GeV (300 GeV) signal hypothesis is
added to the background in Fig. 1 (Fig. 2) to illustrate how a hypothetical signal would appear
above the background prediction. The data agree well with the SM background prediction.

An upper bound at 95% confidence level (CL) is set on σB2, where σ is the cross section for
pair production of third-generation LQs (top squarks) and B is the branching fraction for the
LQ decay to a tau lepton and a bottom quark (the top squark decay to a χ̃± and a bottom
quark, with a subsequent decay of the chargino via χ̃± → ν̃τ± → qqτ±). The modified-
frequentist construction CLs [43–45] is used for the limit calculation. A maximum likelihood
fit is performed to the ST spectrum simultaneously for the eτh and µτh channels, taking into
account correlations between the systematic uncertainties. Expected and observed upper limits
on σB2 as a function of the signal mass are shown in Fig. 3 for the leptoquark search and Fig. 4
for the top squark search.

We extend the current limits and exclude scalar leptoquarks and top squarks decaying through
the coupling λ′333 with masses below 740 GeV, in agreement with a limit at 750 GeV, expected
in the absence of a signal. We exclude top squarks undergoing a chargino-mediated decay
involving the coupling λ′3jk with masses in the range 200–580 GeV, in agreement with the ex-
pected exclusion limit in the range 200–590 GeV. These upper limits assume B = 100%. Similar
results are obtained when calculating upper bounds using a Bayesian method with a uniform
positive prior for the cross section.

The upper bounds for the leptoquark search as a function of the leptoquark branching fraction
and mass are shown in Fig. 5. Small B values are not constrained by this search. Results from
the CMS experiment on a search for top squarks decaying to a top quark and a neutralino [46]
are used to further constrain B. If the neutralino is massless, the final state kinematic distribu-
tions for such a signal are the same as those for the pair production of leptoquarks decaying
to a tau neutrino and a top quark. Limits can therefore be placed on this signal, which must
have a branching fraction of 1− B if the leptoquark only decays to third-generation fermions.
This reinterpretation is included in Fig. 5. The unexcluded region at MLQ = 200–230 GeV corre-
sponds to a portion of phase space where it is topologically very difficult to distinguish between
the top squark signal and the tt process, owing to small missing transverse momentum. A top
squark excess in this region would imply an excess in the measured tt cross section of ∼10%.

Table 1: The estimated backgrounds, observed event yields, and expected number of signal
events for the leptoquark search. For the simulation-based entries, the statistical and systematic
uncertainties are shown separately, in that order.

eτh µτh
tt irreducible 105.6±18.1 66.7±12.6
Major reducible 147.8±33.0 117.3±18.9
Z(``/ττ)+jets 21.4±7.4±4.9 7.5±4.6±0.2
Single t 16.0±2.8±4.4 17.3±2.8±4.7
VV 4.1±0.6±1.3 2.6±0.5±0.8
Total exp. bkg. 294.9±7.9±39.1 211.4±5.4±23.4
Observed 289 216
M = 500 GeV 57.7±1.4±5.9 51.6±1.3±5.3
M = 600 GeV 20.1±0.5±1.9 17.7±0.4±1.6
M = 700 GeV 7.1±0.2±6.3 6.2±0.1±5.5
M = 800 GeV 2.7±0.1±0.2 2.3±0.1±0.2



7

Table 2: The estimated backgrounds, observed event yields, and expected number of signal
events for the top squark search. For the simulation-based entries, the statistical and systematic
uncertainties are shown separately, in that order.

eτh µτh
tt irreducible 88.3±13.7 55.0±9.5
Major reducible 65.7±16.4 59.8±13.8
Z(``/ττ)+jets 4.9±2.5±1.1 11.6±5.5±2.7
Single t 3.9±1.5±1.1 3.5±1.3±0.9
VV 0.6±0.2±0.2 0.4±0.2±0.1
Total exp. bkg. 163.4±2.9±21.5 130.3±5.6±17.1
Observed 156 123
M = 300 GeV 94.±8.5±13.2 82.8±8.0±11.7
M = 400 GeV 43.9±2.6±4.3 38.3±2.3±3.8
M = 500 GeV 19.4±0.8±1.8 15.4±0.7±1.5
M = 600 GeV 6.9±0.9±0.7 5.7±0.3±0.5
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Figure 1: The final ST distribution for the leptoquark search with the eτh and µτh channels
combined. A signal sample for leptoquarks with the mass of 500 GeV is added on top of the
background prediction. The last bin contains the overflow events. The horizontal bar on each
observed data point indicates the width of the bin in ST.
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Figure 2: The final ST distribution for the top squark search with the eτh and µτh channels
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background prediction. The last bin contains the overflow events. The horizontal bar on each
observed data point indicates the width of the bin in ST.
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Figure 3: The expected and observed combined upper limits on the third-generation LQ pair
production cross section σ times the square of the branching fraction, B2, at 95% CL, as a func-
tion of the LQ mass. These limits also apply to top squarks decaying directly via the coupling
λ′333. The green (darker) and yellow (lighter) uncertainty bands represent 68% and 95% CL
intervals on the expected limit. The dark blue curve and the hatched light blue band represent
the theoretical LQ pair production cross section, assuming B = 100%, and the uncertainties
due to the choice of PDF and renormalization/factorization scales.
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top squark mass. These limits apply to top squarks with a chargino-mediated decay through
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represent the theoretical top squark pair production cross section, assuming B = 100%, and
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branching fraction for the leptoquark decay to a tau lepton and a bottom quark, as a function
of the leptoquark mass. A search for top squark pair production [46] has the same kinematic
signature as the leptoquark decay to a tau neutrino and a top quark. This search is reinterpreted
to provide the expected (blue hatched) and observed (blue open) 95% CL upper limits for low
values of B, assuming the leptoquark only decays to third-generation fermions.
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7 Summary
A search for pair production of third-generation scalar leptoquarks and top squarks has been
presented. The search for leptoquarks and top squarks decaying through the R-parity violat-
ing coupling λ′333 is performed in final states that include an electron or a muon, a hadronically
decaying tau lepton, and at least two jets, at least one of which is b-tagged. The search for top
squarks undergoing a chargino-mediated decay involving the R-parity violating coupling λ′3jk
is performed in events containing an electron or a muon, a hadronically decaying tau lepton,
and at least five jets, at least one of which is b-tagged. No excesses above the standard model
background prediction are observed in the ST distributions. Assuming a 100% branching frac-
tion for the decay to a tau lepton and a bottom quark, scalar leptoquarks and top squarks
decaying through λ′333 with masses below 740 GeV are excluded at 95% confidence level. Top
squarks decaying through λ′3jk with masses below 580 GeV are excluded at 95% confidence
level, assuming a 100% branching fraction for the decay to a tau lepton, a bottom quark, and
two light quarks. The constraint on the third-generation leptoquark mass is the most stringent
to date, and this is the first search for top squarks decaying through λ′3jk.
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M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa ,b, P. Laricciaa ,b, G. Mantovania ,b,
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